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Abstract—Mobile crowdsensing is a new paradigm by which a platform can recruit mobile workers to perform some sensing tasks by

using their smart mobile devices. In this paper, we focus on a privacy-preserving unknownworker recruitment issue. The platform needs

to recruit someworkers without knowing the qualities of them completing tasks. Meanwhile, these quality information also needs to be

protected from disclosure. To tackle these challenges, wemodel the unknown worker recruitment as a Differentially Private Multi-Armed

Bandit (DP-MAB) game by seeing eachworker as an arm of DP-MAB and the task completion quality contributed by each worker as the

reward of pulling arm. Then, recruiting workers is equivalent to designing a bandit policy of pulling DP-MAB arms. Under this model, we

propose a Differentially Private �-First-based arm-pulling (DPF) algorithm and a Differentially Private UCB-based arm-pulling (DPU)

algorithm, which can achieve the nearly optimal expected accumulative rewards under a given budget. We also analyze the regrets of

the DPF and DPU algorithms and prove that both of them are d-differentially private on the task completion qualities (d > 0). Finally, we

conduct extensive simulations to verify the significant performances of DPF and DPU based on both the real-trace and synthetic

datasets.

Index Terms—Differential privacy, mobile crowdsensing, multi-armed bandit, worker recruitment

Ç

1 INTRODUCTION

WITH the explosive spread of smart mobile devices,
Mobile CrowdSensing (MCS) has become an attractive

paradigm for collecting sensing data. A typical MCS system
consists of a platform residing on the cloud and a collection of
mobile workers. The platform produces some sensing tasks
and recruits mobile workers to perform these tasks by using
their smart mobile devices. After completing the tasks, the
workers will return the corresponding results to the platform.
Since MCS can employ a lot of workers to complete a large
task via theirmobile devices, it has brought considerable flexi-
bility to many applications, such as traffic information collec-
tion, noise pollutionmonitoring, indoor location, etc.

Worker recruitment is one of the most important issues
in MCS systems. Existing worker recruitment mechanisms
can be simply categorized into two models: the passive
model and the proactive model. In the passive model, all
tasks are publicized on the platform and workers directly
apply for their preferred tasks to be performed. In the pro-
active model, the platform proactively recruits suitable
workers to conduct the produced tasks. Since the platform
in the proactive model can manipulate the worker recruit-
ment process to optimize some metrics as it wants (e.g., to
maximize the rewards, minimize the costs, etc.), this model
attracts much research effort. Consequently, many worker
recruitment algorithms have been proposed for various
MCS systems [1], [2], [3], [4], [5]. At the same time, privacy-
preserving issues and incentive mechanism design of
worker recruitment have also been studied, e.g., [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18].

In this paper, we focus on the issue of recruiting unknown
workers for MCS systems. Although existing worker recruit-
ment algorithms can deal with many MCS applications,
most of them assume that the platform knows each worker’s
ability of performing diverse tasks, such as the successful
probability of performing the task, the corresponding com-
pletion quality, and so on. Nevertheless, real MCS systems
often do not support this assumption. Actually, it is difficult
for a worker to evaluate its work skill and quality by itself in
most cases. Thus, it is not realistic for the platform to know
workers’ Qualities of Completing tasks (QoCs) in advance.
On the other hand, workers in most MCS systems are not
familiar with each other, but they might compete for the
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same tasks. The workers are generally not willing to disclose
their QoCs to others, since some sensitive private informa-
tion might be revealed [7]. Therefore, for the unknown
worker recruitment issue, we not only need to select appro-
priate workers without any prior knowledge on their QoCs,
but also need to protect the privacy of each worker’s sensi-
tive information from being revealed to other workers.

A Toy Example. Assume that an MCS platform produces a
task to collect some location-aware noise pollution data by
using mobile devices. The task will last for a long period of
time and thus is divided into many rounds. There are two
workers (A and B) in theMCS system competing for the task.
The objective is to achieve a better QoC performance. How-
ever, the platform does not knowworkers A and B before, so
there is no prior knowledge about their QoCs. Thus, the plat-
form needs to strategically select A or B to conduct each
round of data collection task. During the process, the plat-
formwill repeatedly and randomly select A and B in order to
learn their true QoC values and discover the better worker.
Meanwhile, it will also leverage the knowledge (i.e., the
QoCs of A and B) it has learnt to select the worker who is
potentially the better worker for this task. That is to say,
designing a worker recruitment strategy needs to take learn-
ing workers’ QoC values into consideration. In addition,
another worker C might pretend to participate in the task
and eavesdrop the QoC values of other workers, which can
reveal their sensitive information, such as their locations,
professions, hobbies, etc. Besides, C can manipulate its own
QoC and observe the corresponding sequential recruitment
results published by the platform to infer the QoC ranges of
other workers. Thus, protecting workers’ QoCs from being
revealed also needs be considered.

To tackle the above challenges, we treat the unknown
worker recruitment ofMCS as an online reinforcement learn-
ing process. On one hand, the platform repeatedly estimates
workers’ QoCs by recruiting them to perform some tasks,
generally called the exploration process; on the other hand,
based on the estimated QoCs, the platform continuously
adjusts the recruitment policy to improve the total task com-
pletion quality, also known as the exploitation process. Since
Multi-Armed Bandit (MAB) is an efficient reinforcement
learning model to handle this kind of exploration versus
exploitation dilemma [19], [20], we model our unknown
worker recruitment problem as a Differentially Private MAB
(DP-MAB) game, where each worker is seen as anMAB arm,
recruiting a worker means pulling the corresponding arm,
and the task completion quality contributed by the worker is
seen as the reward of pulling the arm. Meanwhile, we treat
the rewards of pulling arms (i.e., the recruited workers’
QoCs) as a series of sensitive data, and adopt the differen-
tially private mechanism to protect them from being
revealed. The objective is to maximize the expected value of
the accumulative reward (i.e., the total expected QoC), given
a budget of worker recruitment cost.

So far, there have been substantial research on MAB.
However, only a few works have investigated differentially
private MAB problems [21], [22]. Moreover, none of them
involves the costs and budgets of pulling arms. Different
from these existing works, our DP-MAB model is derived
from the unknown worker recruitment problem of MCS
which takes into consideration the differential privacy of the

rewards of pulling arms and the limited budget together.
When introducing the costs and budget constraints into DP-
MAB, our DP-MAB problem contains the 0-1 knapsack prob-
lems, whichmakes it more challengeable and completely dif-
ferent from the problems investigated in [21], [22]. To deal
with this novel DP-MAB model, we extend the well-known
�-First and Upper Confidence Bound (UCB) bandit (a.k.a.,
arm-pulling) policies to propose a Differentially Private
�-First-based arm-pulling (DPF) algorithm and a Differen-
tially Private UCB-based arm-pulling (DPU) algorithm, by
which the platform can recruit suitable workers under a
given budget. More specifically, our major contributions are
summarized as follows:

1) We introduce a privacy-preserving unknown worker
recruitment problem for MCS systems, where each
worker’s QoC follows an unknown distribution. We
model it as a DP-MAB game with a limited budget,
where recruiting unknownworkers is turned to deter-
mining a bandit policy with the maximum expected
accumulative reward. Unlike existing works, we con-
sider the differential privacy ofworkers’ QoCs and the
recruitment budget simultaneously in our DP-MAB
model.

2) We propose a budget-feasible �-First differentially
private bandit algorithm, i.e., DPF, by which the plat-
form can recruit unknown workers to achieve a
nearly optimal expected accumulative reward. More-
over, we analyze the corresponding online approxi-
mate performance to derive an upper bound on the
regret (i.e., the expected reward loss). Also, we prove
that the algorithm is d-differentially private (d > 0).

3) We also propose a budget-feasible differentially pri-
vate UCB-based bandit algorithm, i.e., DPU, for the
platform recruiting unknown workers. Likewise,
DPU can achieve the d-differential privacy on work-
ers’ QoCs. Moreover, we also derive an upper bound
on the regret of DPU.

4) We conduct extensive simulations on synthetic and
real traces to evaluate the proposed DPF and DPU
algorithms. Both of them demonstrate the significant
performances. Moreover, when the budget of recruit-
ingworkers is small, DPF can obtain a better QoCper-
formance thanDPU; otherwise, if the budget becomes
large, DPUwill achieve a better QoC performance.

The remainder of the paper is organized as follows. We
introduce the models and the problem in Section 2. The
DPF and DPU algorithms are proposed in Sections 3 and 4,
respectively. We evaluate their performances in Section 5.
After reviewing the related works in Section 6, we discuss
the possible extensions of our system in Section 7. The con-
clusion of this paper is presented in Section 8.

2 MODELS AND PROBLEM

2.1 System Overview

In this paper, we leverage an MCS system to continuously
collect information for a period of time under a fixed mone-
tary budget B, such as collecting daily noise pollution infor-
mation in a month, or collecting real-time road-side parking
availability information, etc. The system includes a platform
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and a collection of mobile workers who are willing to per-
form the information collection task, denoted by a set
N ¼def f1; . . . i; . . . ; Ng. The information collection task is con-
ducted periodically according to the following mode:

Definition 2.1 (Periodical MCS Information Collection
Mode). Time is divided into a series of equal-length time slots,
denoted by T ¼def f1; . . . ; t; . . .g. According to different realistic
applications, a time slot might be one hour, one day, and so on.
At the beginning of each time slot, the platform recruits a
worker. Then, the worker performs the task and returns the cor-
responding results before the end of the time slot. The collected
information will bring a reward to the MCS system. Hence, the
platform will pay a certain monetary remuneration for the
worker. This process will be continuously conducted until the
given budget B is exhausted.

In the MCS system, workers’ QoCs are unknown to the
platform. We call them unknown workers:

Definition 2.2 (Unknown Worker and QoC). For each
worker i2N , we use a normalized nonnegative random vari-
able Qi;t2½0; 1� to denote its Quality of Completing the task
(QoC) in an arbitrary time slot t2T . Moreover, Qi;t follows an
unknown distribution with an unknown mean qi, which is
determined by the worker’s ability. Since the distribution and
mean are unknown, we call these workers unknown workers, or
workers for short.

In addition, we also define the notations of cost and
reward for each worker completing the task:

Definition 2.3 ([Cost, Reward, and Accumulative
Reward). When worker i2N is recruited by the platform to
perform the task at time slot t, the worker will incur a cost, and
the platform will produce a reward. The cost and the reward
are denoted as ci and Xi;t, respectively. In this paper, the
reward contributed by each worker is actually the worker’s
QoC. Then, Xi;t¼Qi;t. When worker i is not recruited, we have
Xi;t¼0. Moreover, we define ~Xt¼ðX1;t; . . . ; XN;tÞ

def

and let the
sequence of the rewards contributed by worker i up to time slot
t be denoted as Xi;1:t¼fXi;1; . . . ; Xi;tg. Additionally, the total
reward contributed by worker i from time slot 1 to t is called
the accumulative reward, denoted by ri;t¼

Pt
j¼1 Xi;j.

Remark. Here, we assume that the reward contributed by a
worker is equivalent to the QoC of this worker. This is
reasonable since each worker will report the results of
performing the task to the platform, and the platform can
evaluate the QoC of the worker and represent it by using
the reward contributed by the received results. Addition-
ally, the objective of the platform is to recruit appropriate
workers to maximize the expected accumulative reward. It is
actually equivalent to maximizing the total expected QoC
of all recruited workers.

2.2 Differentially Private Multi-Armed Bandit Model

MAB is a reinforcement learning model which is widely
used to make a series of online decisions in an uncertain
environment [19], [20]. A typical MAB model includes a slot
machine with multiple arms. Each arm is associated with a
reward drawn from an unknown distribution. A player will
continuously pull the arms according to some strategy,

called bandit policy, so as to maximize the expected accumu-
lative reward.

In our MCS system, the platform sequentially recruits
unknownworkers to perform the information collection task
under the budget B, while protecting the privacy of the
recruited workers. Taking the privacy and the budget into
consideration, we model the unknown worker recruitment
as a DP-MAB game, illustrated in Fig. 1. In the DP-MAB
model, the platform is seen as a player, each worker in N is
an arm, and the QoC of each recruited worker is seen as the
reward of pulling the corresponding arm. In addition, the
rewards of pulling arms are sensitive data to be protected via
the differentially private mechanism. The objective of the
platform is to sequentially pull the arms according to a bud-
get-feasible bandit policy, so as to maximize the accumula-
tive reward, while protecting the privacy of the rewards of
pulling arms (i.e., workers’ QoCs). Let at2N denote the arm
that the platform pulls in time slot t. Then, the bandit policy
can be defined as follows:

Definition 2.4 (Budget-Feasible Bandit Policy). A bandit
policyC is a sequence of maps: fC1; . . . ;Ct; � � �g, each of which
specifies the arm that the platform will pull under the historical
records, i.e., at¼Ctð~X1:t�1Þ, where ~X1:t�1¼ð~X1; . . . ; ~Xt�1Þ.
Moreover, the total cost is no larger than the given budget, i.e.,P

t cat �B.

While applying a bandit policy to pull the arms, we
adopt the differential privacy mechanism to protect the val-
ues of reward of each arm in the whole process. The differ-
ential privacy can be formally defined as follows:

Definition 2.5 (d-Differential Privacy([21],[23])). A bandit
policy C is d-differentially private if and only if over all time
slots in T , for all sequences ~X1:t�1 and ~X0

1:t�1 differing in at
most one time slot, and for any set S�N we have

PfCtð~X1:t�1Þ2Sg�ed � PfCtð~X0
1:t�1Þ2Sg: (1)

Here, d > 0 is a small constant, indicating the privacy level
that the policy provides.

Then, the accumulative reward ri;t which is manipulated
by a differentially private mechanism is called the disguised
accumulative reward. To make a distinction, we use r̂i;t to
denote the disguised accumulative reward.

Remark. Intuitively, for an arbitrary time slot t and a pair of
reward sequences ~X1:t and ~X0

1:t with at most one different
reward vector, there at most exists one time slot j� t such
that ~Xj¼ðX1;j; . . . ; Xi;j; . . . ; XN;jÞ is changed to ~X0

j¼ðX0
1;j;

. . . ; X0
i;j; . . . ; X

0
N;jÞ. Definition 2.5 means that if we change

any reward vector ~Xj to ~X0
j, the worker recruited by the

bandit policy C will not change too much at time slot

Fig. 1. The DP-MAB model.
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jþ 1 or later on. This also indicates that an adversary
will not be able to distinguish between the presence or
absence of the reward vector ~Xj from the output (i.e., a
recruited worker) of the differentially private bandit pol-
icy. In addition, malicious workers might eavesdrop the
QoC values of others for the sake of acquiring their pri-
vate information, and the QoC of a worker is equivalent
to the reward of this worker which is contributed to the
platform. Therefore, we mainly protect the differential
privacy of the QoC sequence of each worker (i.e., the cor-
responding reward vector) from being revealed to other
workers, except for the platform.

2.3 Problem Formalization

Under the DP-MABmodel, the platform recruits the workers
according to a bandit policy. The policy needs to i) satisfy
d-differential privacy over the whole recruitment process, as
shown in Definition 2.5, ii) maximize the expected accumula-
tive reward, and iii) guarantee that the total cost of pulling
arms is nomore than the given budgetB. We use zi;t and zi;tþ
to denote the total number of times that the ith arm has been
pulled from time slot 1 to t and from t to the end time slot,
respectively. Now, let r denote the accumulative reward
that the platform obtains. Then, the expected accumulative
rewardE½r� can be calculated as follows:

E½r�¼
X

i2N qiE½zi;1þ�: (2)

And, the privacy-preserving unknown worker recruitment
problem can be formulated as:

Maximize : E½r� (3)

Subject to :
X

i2N cizi;1þ �B (4)

Eq: 1 holds: (5)

For ease of reference, we list the main notations in Table 1.

3 THE DPF BANDIT ALGORITHM

In this section, we propose a budget-feasible differentially
private �-First-based bandit algorithm, i.e., DPF, to solve the
unknown worker recruitment problem. First, we model the
unknown worker recruitment as a series of arm-pulling
operations for a DP-MAB game. Under this model, the DPF
algorithm adopts a budget-feasible �-First bandit policy to
determine workers, where the � ratio of total budget is
invested for learning the workers’ QoCs (i.e., exploration)
and the residual budget is used to select the best worker (i.e.,
exploitation). Meanwhile, the DPF algorithm leverages the
hybrid differentially private mechanism to protect the pri-
vacy of workers’ QoCs during the whole recruitment pro-
cess. In the following subsections, we elaborate the main
technologies, present the detailed algorithm, and proceed
with the performance analyses.

3.1 The Hybrid Differentially Private Mechanism

Under the DP-MABmodel, the platform conducts a series of
arm-pulling operations for worker recruitment. In each time
slot, the platform will determine an arm to pull according to
the accumulative reward of each arm. If an arm is pulled,
the corresponding worker’s QoC will be added to the accu-
mulative reward of this arm; otherwise, the corresponding
accumulative reward will remain unchanged, which is
equivalent to being added by 0. During this process, we
apply the hybrid differentially private mechanism to protect
the workers’ QoCs from being revealed [24]. When the plat-
form updates the accumulative reward of each arm, this
mechanism will generate a Laplace noise for each incremen-
tal value (even though the incremental value might be 0).
More specifically, we consider an arbitrary worker i2N ,
the rewards contributed by whom are Xi;1þ ¼fXi;1; Xi;2; . . . ;
Xi;t; . . .g. Based on the hybrid differentially private mecha-
nism, we introduce a function Hið�Þ, which maps a series of
rewards to a disguised accumulative reward by adding
Laplace noises. Let Lapð�Þ denote a Laplace distribution
with mean zero and scale �, where the probability density
function is denoted by fðxÞjLapð�Þ ¼ 1

2� expð�
jxj
� Þ. Then, when

inputting Xi;1:t¼fXi;1; . . . ; Xi;tg, Hið�Þ can be calculated as
follows:

HiðXi;1:tÞ ¼
Xt
j¼1

Xi;jþLap
2N

d

� �
þ ðk�1ÞLap 2Nblogtc

d

� �
:

(6)

Here, k is the number of 1’s in the binary expression of t,
and the k Laplace noises are added at the time slot t. More-
over, we let the disguised accumulative reward of pulling the
ith arm be

r̂i;t¼HiðXi;1:tÞ: (7)

Then, for each arm, the platform can compute the corre-
sponding disguised accumulative reward. In this way, the
true value of eachXi;t is protected from being revealed.

3.2 The Budget-Feasible �-First Bandit Policy

In the DP-MAB model, the whole arm-pulling (i.e., the
unknown worker recruitment) process is divided into the
exploration and exploitation phases. To deal with the

TABLE 1
Description of Major Notations

Variable Description

i,N the ith worker, and the set of all workers.

T ; 1 : t; tþ the set of all time slots (T ¼def f1; . . . ; t; � � �g), the time
slots from 1 to t, and the time slots from t to the end
time slot.

ci, B; Bt worker i’s cost, the total budget of recruiting workers,
and the residual budget at time slot t.

Qi;t, qi worker i’s Quality of Completing the task in time slot
t, and the mean of Qi;t (Definition 2.2).

Xi;t,Xi;1:t, ~Xt;
~X1:t�1

the reward contributed by worker i in time slot t, the
sequence of these rewards until time slot t (Def. 2.3),
~Xt! ¼ðX1;t; . . . ; XN;tÞ

def

, and ~X1:t�1¼ð~X1; . . . ; ~Xt�1Þ.
zi;t, zi;tþ the total number of times that worker i has been

recruited from time slot 1 to t and from t to the end
time slot (Sec. 2.3).

ri;t, r the accumulative reward contributed by worker i
until time slot t (Def. 2.3), and the accumulative
reward contributed by all workers until the budget
expires.

r̂i;t the disguised accumulative reward contributed by
worker i until time slot twhich computed by a hybrid
mechanism.
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exploration versus exploitation dilemma, we propose a
budget-feasible �-First bandit policy. First, the platform
determines a real number � from the open interval ð0; 1Þ
according to its historical experience. Then, it divides the
budget B into two parts: �B for the exploration phase and
ð1��ÞB for the exploitation phase.

In the exploration phase, the platform estimates the mean
reward of each arm (i.e., the mean QoC of the correspond-
ing worker) by recruiting the worker to perform the task.
Since there is no prior knowledge on workers’ QoCs, we let
each arm be tested equally. Without loss of generality, we
assume that the costs of all arms in N satisfy c1�� � ��cN .
Then, the platform pulls the arms in N one by one in the
non-decreasing order of their costs until the budget �B runs
out. Let t be the end time slot of the exploration phase,
which satisfies:

t ¼ argmax
t

Xt
j¼1

caj ��B: (8)

Let zi;t denote the total number of times that the ith arm has
been pulled in this phase and let r̂i;t denote the correspond-
ing disguised accumulative reward. Then, they satisfy:

zi;t�
�BPN
i¼1ci

$ %
; r̂i;t ¼ HiðXi;1:tÞ: (9)

Here, b�c is the floor function. Based on Eqs. (8) and (9), the
platform can estimate the mean value of the worker i’s
QoC, denoted by q̂i, satisfying q̂i¼ r̂i;t=zi;t .

In the exploitation phase, the platform conducts arm-
pulling operations according to the means of workers’ QoCs
(i.e., the estimated rewards of arms) that are estimated in
the exploration phase. In order to maximize the expected
accumulative reward within the budget constraint, we
model the arm-pulling in this phase as a knapsack problem
to be solved, where each arm is an item, the estimated mean
reward of pulling an arm is the value of the item, the cost of
pulling the arm corresponds to the weight of the item, and
the budget ð1��ÞB is seen as the capacity of the knapsack.
Let zi;ðtþ1Þþ denote the total number of times that the ith arm
is pulled in the exploitation phase. Then, the problem can
be formulated as follows:

maximize :
XN
i¼1

q̂izi;ðtþ1Þþ (10)

subject to :
XN
i¼1

cizi;ðtþ1Þþ �ð1��ÞB: (11)

Since this knapsack problem is a well-known NP-hard
problem,we adopt a greedy strategy to solve it. First, the plat-
form computes the value per weight for each item, i.e., q̂i

ci
,

which is called the density of the ith arm. Then, the platform
sorts the arms in the non-decreasing order of their densities.
Next, in each time slot, the platform continuously pulls the
armswith the highest density values until the budget ð1� �ÞB
is exhausted. Each arm is allowed to be repeatedly pulled.

For better understanding, we follow the example in Sec-
tion 1 to illustrate the budget-feasible �-First bandit policy,

as shown in Fig. 2. In this example, the monetary budget is
200, and three workers compete for the task, whose costs
are fc1¼2; c2¼4; c3¼5g. Assume that the QoC of each
worker follows the uniform distribution on [0,1], and the
corresponding means are q1¼0:4, q2¼0:6, q3¼0:8, as shown
in Figs. 2a and 2b. Let �¼0:1. Then, the budgets for explora-
tion and exploitation are 20 and 180, respectively. Note that
c1 < c2 < c3. According to the budget-feasible �-First bandit
policy, in the exploration phase, the three workers will be
recruited in the order of h1; 2; 3; 1; 2; 1i until the residual
budget exhausts. At the end of exploration, we can compute

the estimated QoC means for three workers:
r1;6
z1;6

¼
0:6þ0:3þ0:5

3 ¼ 1:4
3 ,

r2;6
z2;6

¼ 0:7þ0:5
2 ¼0:6,

r3;6
z3;6

¼ 0:9
1 ¼0:9. Accordingly, the

estimated densities are
r1;6
c1z1;6

¼ 1:4
6 ;

r2;6
c2z2;6

¼0:15;
r3;6
c3z3;6

¼0:18.

Then, in the 7th day, the exploitation phase starts and the
budget is 180, i.e., B7¼180. Since

r1;6
c1z1;6

>
r2;6
c2z2;6

>
r3;6
c3z3;6

, worker

1 will be always recruited until the residual budget becomes
0. Then, the whole recruitment process terminates and the
recruitment order is h1; 2; 3; 1; 2; 1; 1; 1; . . . ; 1i, as shown in
Fig. 2c. Here, for simplicity, we remove the Laplace noises
produced by the hybrid differentially private mechanism.

3.3 The Detailed DPF Algorithm

The detailed DPF algorithm is shown in Algorithm 1. In
Steps 3-8, we conduct the exploration process. More specifi-
cally, in Steps 5-6, we sequentially recruit the workers in N .
Whenever recruiting a worker, we judge whether the resid-
ual budget Bt is enough to recruit this worker. The explora-
tion process terminates when the residual budget is less than
the minimal cost c1. In Step 8, we compute the disguised
accumulative reward and the disguised estimated QoC
mean of each worker. More specifically, if t can be repre-
sented as an integer power of 2, r̂i0;t¼ r̂i0;t�1þLapð2N=dÞ; Oth-
erwise, r̂i0;t¼ r̂i0;t�1þðk� 1ÞLapð2Nblog tc=dÞ. Here, k is the
number of 1’s in the binary expression of t. In Steps 12-20, we

Fig. 2. An illustration of the budget-feasible �-First bandit policy.
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conduct the exploitation process, in which we recruit work-
ers according to the greedy solution to the problem shown in
Eqs. (12) and (13). That is, we greedily pull the arm with the
highest value of q̂i=ci under the residual budget. In Step 18,
we compute the disguised accumulative reward of each
worker as in Step 8. The accumulative reward r over the
whole process is computed in Step 21.

Algorithm 1. The DPF Algorithm

Input:N , fXi;t; ciji2N ; t2T g, B, �, d
Output: r
1: Initialization: t¼0; 8i2N : zi;t¼0;
2: Exploration phase:
3: t¼ tþ1; Let Bt¼�B be the residual budget; Let t0 ¼ t;
4: while Bt�c1 do
5: while i¼ t0modN and Bt�ci do
6: at¼ i; Pull the atth arm;
7: 8i0 2N : zi0;t¼zi0;t�1; zat;t¼zat;t�1þ1;

8: 8i0 2N : r̂i0 ;t¼Hi0 ðXi0;1:tÞ; q̂i0 ¼
r̂i0 ;t
zi0 ;t

;

9: Btþ1¼Bt�cat ; t¼ tþ1; t0 ¼ t0þ1;
10: t0 ¼1;
11: Exploitation phase:
12: Let Bt¼ð1��ÞB be the residual budget;
13: LetN 0¼N be the workers that have not been recruited;
14: while Bt�c1 do
15: while at¼argmaxi2N 0

q̂i
ci
and Bt�cat do

16: Pull the atth arm;
17: 8i0 2N : zi0 ;t¼zi0 ;t�1; zat;t¼zat;t�1þ1;
18: 8i0 2N : r̂i0 ;t¼Hi0 ðXi0;1:tÞ;
19: Btþ1¼Bt�cat ; t¼ tþ1;
20: N 0¼N 0 � fatg;
21: r¼

P
i2N r̂i;t�1;

3.4 Performance Analysis

In this subsection, we prove the security, and analyze the
regret performance and computation complexity of DPF.

Theorem 3.1. The DPF algorithm is d-differentially private.

Proof. Consider an arbitrary time slot t and a pair of reward
sequences ~X1:t and ~X0

1:t with at most one different reward
vector. That is, there at most exists one time slot j� t such
that ~Xj¼ðX1;j; . . . ; Xi;j; . . . ; XN;jÞ is tampered to ~X0

j¼
ðX0

1;j; . . . ; X
0
i;j; . . . ; X

0
N;jÞ. Then, for any worker i, Xi;1:t and

X0
i;1:t differ in at most one reward record. Let D¼

maxj2½1;t�jXi;j�X0
i;jj. Since all rewards belong to [0,1], we

have D�1, and j
Pt

j¼1Xi;j �
Pt

j¼1X
0
i;jj�D�1. Then, for

ri2R, according to [23] and Eq. (6), we have:

PfHiðXi;1:tÞ¼rig
PfHiðX0

i;1:tÞ¼rig

¼
Pfri�

Pt
j¼1 Xi;j¼Lapð2N

d
Þþðk� 1ÞLapð2Nblog tc

d
Þg

Pfri�
Pt

j¼1 X
0
i;j¼Lapð2N

d
Þþðk� 1ÞLapð2Nblog tc

d
Þg

¼
fðri�

Pt
j¼1 Xi;jÞjLapð2N

d
Þ �½fðri�

Pt
j¼1 Xi;jÞjLapð2Nblog tc

d
Þ�
ðk�1Þ

fðri�
Pt

j¼1 X
0
i;jÞjLapð2N

d
Þ �½fðri�

Pt
j¼1 X

0
i;jÞjLapð2Nblog tc

d
Þ�
ðk�1Þ

� e
d
2Nð1þ k�1

blog tcÞj
Pt

j¼1
Xi;j�
Pt

j¼1
X0
i;j
j

� e
dD
N �e

d
N:

Here, k is the number of 1’s in the binary expression of t.
Thus, k� 1�blog tc. Therefore, for eachworker, the hybrid
mechanism can guarantee that its reward sequence is
d
N-differentially private. Now, we consider all workers.
According to the composition property of differential pri-
vacy, for some a2N we have:

PfCðX1:tÞ¼ag
PfCðX0

1:tÞ¼ag �
QN

i¼1 PfHiðXi;1:tÞ¼rigQN
i¼1 PfHiðX0

i;1:tÞ¼rig
� ed: (12)

Therefore, we can conclude that the DPF algorithm is
d-differentially private. tu

Now, we derive an upper bound on regret of the DPF
algorithm. Essentially, the regret is the expected loss of the
reward achieved by DPF, compared to an optimal algo-
rithm. Here, the optimal algorithm assumes that the plat-
form has known the true QoC of each worker in advance
and no privacy-preserving mechanisms are employed, so
that it can make the optimal worker recruitment decision.
Before the detailed theoretical analysis, we list the fre-
quently used notations in Table 2 for clarity.

First, we introduce two lemmas which will be used in the
derivation of regret bound:

Lemma 3.2 ([21], [24]). Consider an arbitrary worker’s accu-
mulative reward ri;t (¼

Pt
j¼1Xi;j) and the accumulative reward

r̂i;t disguised by using hybrid differentially private mechanism.

Denote vt¼
ffiffi
8

p

d
log ð4

g
Þðlog tþ1Þ. Then, for any time slot t2T

and any 0 < g� t�b (b > 0), we have

Pfjr̂i;t�ri;tj�vtg�g:

Here, jr̂i;t�ri;tj equals to the sum of Laplace noises added to the
accumulative reward ri;t. And, vt indicates an upper bound on
the total Laplace noises with a high probability. According to
[21], [24], we have vt¼

ffiffi
8

p

d
log ð4

g
Þðlog tþ1Þ.

Lemma 3.3 (Chernoff-Hoeffding bound). Suppose that Y1;
Y2; . . . ; Yt are t random variables in the same range [0,1], satis-
fying E½YjjY1; . . . ; Yj�1�¼m for 8j2½1; t�. Then, for any h�0,
we have:

P
Xt

j¼1
Yj� tmþh

n o
� e�

2h2

t ; P
Xt

j¼1
Yj� tm�h

n o
�e�

2h2

t :

Based on the two lemmas, we have:

Lemma 3.4. Denote the total accumulative reward produced by
DPF at time slot t as rt¼

PN
i¼1 ri;t, and denote the

TABLE 2
Description of Major Formulas for DPF and DPU

Variable Description

vt the upper bound of the sum of noises (Lemma 3.2).

i	, i
 the arm with the maximal density and the arm the
minimal density (Lemma 3.4).

s; si the distance between the maximal density and the
minimal density (Lemma 3.4), and the distance between
the maximal density and the density of the ith arm.

Ii;t the UCB index of the ith arm (Definition 4.1).

c	, c
 the maximal cost and the minimal cost (Sec. 4.3).
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corresponding optimal total accumulative reward as r	t . Let t
(t < t) be the end time slot of the exploration phase and
vt¼

ffiffi
8

p

d
log ð4

g
Þðlog tþ1Þ. Then, for any h�0 and 0 < g� t�b

(b > 0), with the probability at least 1�ðe�
2h2

t þgÞ, the expected
regret E½r	t ��E½rt� satisfies:

E½r	t ��E½rt� � 2þ �sBþ 4ðhþvtÞ
PN

i¼1ci
ci	

1

�
�1

� �
;

(13)

where i	¼argmaxi2N
qi
ci
, i
¼argmini2N

qi
ci
, and s¼ qi	

ci	
�qi


ci

.

Proof. First, according to the DPF algorithm, the total accu-
mulative reward in the exploration phase satisfies:

E½rt�� �B
qi

ci


� �
� �B

qi

ci


�1: (14)

Second, we consider the exploitation phase. Note that at
the end of the exploration phase, we have obtained the dis-
guised estimated QoC q̂i of each worker i, i.e., q̂i¼

r̂i;t
zi;t

.
Based on this, we can capture the worker with the largest
disguised QoC per cost. Let î	 be this worker, i.e., î	¼
argmaxi2N

q̂i
ci
. Then, according to the greedy arm-pulling

strategy in the exploitation phase, the expected accumula-
tive reward produced byDPF, denoted by rt:t, satisfies:

E½rt:t��
ð1� �ÞB

cî	

$ %
qî	 �ð1��ÞB

qî	
cî	

�1: (15)

Next, we focus on the difference between the true value
of an arbitrary QoC mean qi and the corresponding dis-
guised estimated value q̂i produced by DPF. Since ri;t¼Pt

j¼1 Xi;j denotes the sum of QoCs that worker i actually
contributes to the platform, according to Lemma 3.2, we
have:

P jq̂i �
ri;t
zi;t

j� vt
zi;t

� �
¼ Pfjr̂i;t � ri;tj�vtg�g: (16)

At the same time, note that zi;tqi denotes the expected value
of accumulative reward ri;t, i.e., E½ri;t�¼E½

Pt
j¼1 Xi;j�¼

zi;tqi. Then, according to Lemma 3.3, we have:

P j ri;t
zi;t

�qij�
h

zi;t

� �
¼Pfjri;t�zi;tqij�hg�e

�2h2

zi;t : (17)

Combining Eqs. (16) and (17), we can obtain:

P jq̂i�qij�
vt þ h

zi;t

� �
�1� e

�2h2

zi;t þg

� �
: (18)

Note that t�zi;t�zi;t�b �BPN

i¼1
ci
c� �B

2
PN

i¼1
ci
. Thus, we have:

P jq̂i�qij�
vt þ h

�B=2
PN

i¼1ci

( )
�1� e�

2h2

t þg

� �
: (19)

Finally, according to Eqs. (14) and (15), we have:

E½r	t ��E½rt� � B
qi	
ci	

�E½rt��E½rt:t�

� �sBþð1��ÞB qi	
ci	

�
qî	
cî	

 !
þ2:

(20)

Further, according to Eq. (19), we can get:

P jq̂i	�qi	 j �
vt þ h

�B=2
PN

i¼1ci

( )
�1� e�

2h2

t þg

� �
; (21)

P jq̂î	�qî	 j �
vt þ h

�B=2
PN

i¼1ci

( )
�1� e�

2h2

t þg

� �
: (22)

Note that
q̂
î	
c
î	
� q̂i	

ci	
. Then, combining Eqs. (20) and (22), we

have

E½r	t ��E½rt� � 2þ �sBþ 2ð1��ÞB hþvt

ci	 � �B=2
PN

i¼1ci

� 2þ �sBþ 4ðhþvtÞ
PN

i¼1ci
ci	

1

�
�1

� �
;

with the probability of no less than 1�ðe�
2h2

t þgÞ. There-
fore, the lemma holds. tu

Based on Lemma 3.4, we can set � as a specific value
which can minimize the upper bound in Eq. (13). Then, we
have the following theorem:

Theorem 3.5. When we set g¼ t�2 and �¼ð4
PN

i¼1
ci

sBci	
ðhþ

ffiffi
8

p

d
log

ð2Bc1 Þðlog
B
c1
þ1ÞÞÞ

1
2, the upper bound on the regret shown in

Eq. (13) can be tightened to OðB1
2 log ðBc1ÞÞ.

Proof. Let T be the end time slot when the DPF algorithm
terminates. Then, T � B

c1
. Since g¼ t�2, we have vT �

ffiffi
8

p

d
log

ð2T ÞðlogTþ1Þ¼
ffiffi
8

p

d
log ð2Bc1 Þðlog

B
c1
þ1Þ. Then, according to

Lemma 3.4, till the end time slot, we have

E½r	T � � E½rT ��2þ�sB

þ 4
PN

i¼1ci
ci	

hþ
ffiffiffi
8

p

d
log

2B

c1

� �
log

B

c1
þ1

� �� �
1

�
�1

� �
:

Finally, let �¼ð4
PN

i¼1
ci

sBci	
ðhþ

ffiffi
8

p

d
log ð2Bc1 Þðlog

B
c1
þ1ÞÞÞ

1
2, the

above upper bound can achieve a minimal value:

2þ2

�
4sB

PN
i¼1ci

ci	

�
hþ

ffiffiffi
8

p

d
log

�
2B

c1

��
log

B

c1
þ1

���1
2

� 4
PN

i¼1ci
ci	

�
hþ

ffiffiffi
8

p

d
log

�
2B

c1

��
log

B

c1
þ1

��
:

(23)

Here, Eq. (23) is dominated by the second item, i.e.,

2B
1
2ð4s

PN

i¼1
ci

ci	

	
hþ

ffiffi
8

p

d
log ð2Bc1 Þðlog

B
c1
þ1ÞÞÞ

1
2, the order of

which is OðB1
2 log ðBc1ÞÞ. Therefore, the upper bound on

the regret of DPU is tightened to OðB1
2log ðBc1ÞÞ. The theo-

rem holds. tu

The above regret analysis shows that the reward loss of
the DPF algorithm is mainly composed of two parts. One is
due to the reason that the platform does not know the QoC of
each worker. Another is incurred by the application of the
differential privacy mechanism. When eliminating the effect
of differential privacy from the above analysis, we can derive
that the first part of reward loss will be bounded by OðB2

3Þ,
which is aligned with the state-of-the-art results of similar
MAB problems (e.g., [25], [26]). In other words, due to the
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application of the differential privacy mechanism, the regret
bound of DPF changes from OðB2

3Þ to OðB1
2log ðBc1ÞÞ. Despite

this, it is still a sub-linear regret bound.

Theorem 3.6. The DPF algorithm has a polynomial-time compu-
tational complexity.

Proof. The computation overhead of Algorithm 1 is domi-
nated by Steps 8, 15 and 18. In Steps 8 and 18, it needs to
compute each worker’s disguised accumulative reward
by using the hybrid mechanism. According to [24], the
corresponding computation overhead is OðNB=c1Þ. Then,
the computation overheads of Steps 8 and 18 are both
OðNB2=c21Þ. In addition, in Step 15, we need to find the
worker with the maximal density value, the overhead of
which is OðN logNÞ. Then, the computation complexity of
Algorithm 1 is OðN �maxfB2=c21; logNgÞ. Therefore, the
theorem holds. tu

4 THE DPU BANDIT ALGORITHM

In this section, we propose a budget-feasible differentially
private UCB bandit algorithm, i.e., DPU. In DPU, we extend
the traditional UCB policy to be budget-feasible by taking
the costs and budget of pulling arms into consideration
simultaneously. In addition, the DPU algorithm also applies
the same hybrid differentially private mechanism as in DPF
to protect the privacy of workers’ QoCs. Compared with the
DPF algorithm in Section 3, DPU utilizes not just the esti-
mated average workers’ QoCs during the arm-pulling pro-
cess, but also the upper confidence bounds of the estimated
average QoCs. Moreover, DPU is more applicable to the sce-
narios where the budget B is large. The budget-feasible
UCB policy, the detailed DPU algorithm and the perfor-
mance analyses are presented as follows.

4.1 The Budget-Feasible UCB Policy

The traditional UCB policy computes an UCB index for each
arm, which is composed of the current average reward and
an upper bound of the corresponding confidence (of using
the current value to estimate the true reward) [20]. The arm
with the maximal UCB index value will be pulled in each
time slot. In this paper, we take the privacy into consider-
ation, and thus define a novel concept, called the differentially
private UCB index. This UCB index not only includes the aver-
age reward and the confidence upper bound, but also con-
tains a corresponding Laplace noise. Besides, we take the
costs and budget of pulling arms into consideration. Instead
of just selecting an arm with the maximal differentially pri-
vate UCB index value, we select multiple best arms within
the budget constraint. This is formalized as a series of knap-
sack problems to be solved.

First, we assume that the platform has calculated the cur-
rent accumulative reward contributed by each worker i2N
and has utilized the hybrid differentially private mecha-
nism to disguise the value to get r̂i;t. Based on the disguised
accumulative reward, we can define the differentially pri-
vate UCB index as follows.

Definition 4.1 (Differentially Private UCB Index of
Arm). The differentially private UCB index of the ith arm,
denoted by Ii;t, indicates the disguised expected average reward

(i.e., the estimated QoC) and the size of the corresponding confi-
dence interval, satisfying:

Ii;t¼
r̂i;t
zi;t

þ
ffiffiffiffiffiffiffiffiffiffi
2 ln t

zi;t

s
þ vt
zi;t

; (24)

where zi;t is the total number of times that the ith arm has been
pulled until time slot t, vt¼

ffiffi
8

p

d
ln 4

g
ðlog tþ1Þ, and

ffiffiffiffiffiffiffi
2 ln t
zi;t

q
þ vt

zi;t
is

an upper bound of confidence for the disguised accumulative
reward.

Next, the platform seeks for the optimal bandit policy
under the remaining budget as a reference for determining
the arm to be pulled in the current time slot. This is also
modeled as a knapsack problem, where the residual budget
is the capacity of the knapsack, each arm is an item, and the
pulling cost is seen as the weight. Moreover, based on the
idea of the budget-feasible UCB policy, the differentially
private UCB index of each arm is seen as the value of the
corresponding item. Denote the remaining budget at time
slot t by Bt. Then, the problem is formulated as follows:

maximize :
XN
i¼1

zi;tþIi;t�1 (25)

subject to :
XN
i¼1

cizi;tþ �Bt: (26)

Finally, the platform solves the above problem to pro-
duce a solution fz1;tþ ; . . . ; zN;tþg by using a greedy strategy.
Based on the solution, the platform selects an arm i2N to
be pulled with the following probability:

Pfat¼ ig ¼
zi;tþPN
i¼1zi;tþ

: (27)

In order to better understand the budget-feasible UCB
bandit policy, we leverage the same example in Section 3.2
for illustration, as shown in Fig. 3. In the first three days, the
MCS platform recruits the three workers one by one. Then,
we can compute the UCB index of each worker as Ii;t¼

ri;t
zi;t

þffiffiffiffiffiffiffi
2 ln t
zi;t

q
and compute the density as

Ii;t
ci
, i.e.,

I1;3
c1

¼ 0:6þ
ffiffiffiffiffiffiffiffi
2 ln 3

p

2 ,

I2;3
c2
¼ 0:7þ

ffiffiffiffiffiffiffiffi
2 ln 3

p

4 ,
I3;3
c3

¼ 0:9þ
ffiffiffiffiffiffiffiffi
2 ln 3

p

5 . Since
I1;3
c1

>
I2;3
c2

>
I3;3
c3
, the solution

Fig. 3. An illustration of the budget-feasible UCB bandit policy.
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to the knapsack problem in Eqs. 25-26 will be f94; 0; 0g.
Then, in the 4th day, worker 1 will be recruited with proba-
bility 1. Next, after observing the value of X1;4, we recom-
pute the UCB index densities of the three workers:

I1;4
c1

¼
0:45þ

ffiffiffiffiffiffi
ln 4

p

2 ,
I2;4
c2

¼ 0:7þ
ffiffiffiffiffiffiffiffi
2 ln 4

p

4 ,
I3;4
c3

¼ 0:9þ
ffiffiffiffiffiffiffiffi
2 ln 4

p

5 . Since
I1;4
c1

>
I2;4
c2

>
I3;4
c3
, the

solution to the knapsack problem will be {93,0,0}. Worker 1
will be still recruited with probability 1 in the 5th day,

and the densities are updated as
I1;5
c1

¼ð1:1=3Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 ln 5Þ=3

p
2 ,

I2;5
c2

¼
0:7þ

ffiffiffiffiffiffiffiffi
2 ln 5

p

4 ,
I3;5
c3

¼ 0:9þ
ffiffiffiffiffiffiffiffi
2 ln 5

p

5 . Since
I2;5
c2

>
I1;5
c1

>
I3;5
c3
, the solution to

the knapsack problem will become f1; 61; 0g. Then, in the
6th day, worker 1 will be recruited with probability 1

62, and
worker 2 will be recruited with probability 61

62. The above
operations will terminate until the budget exhausts.

4.2 The Detailed DPU Algorithm

The detailed DPU algorithm is shown in Algorithm 2. In Step
3,we judgewhether the residual budgetBt is enough for pull-
ing an arm. When it is feasible, in Steps 4-6, we sequentially
pull all arms in N once. Then, in Steps 8-9, we compute the
value of Ii;t�1 for each arm. Based on this value, we solve the
problem presented at Eqs. (25) and (26). That is, we greedily
select the arm that has the largest value of Ii;t�1=ci under the
residual budget. When obtaining the greedy solution
fz1;tþ ; . . . ; zN;tþg, in Step 11, we select and pull an arm accord-
ing to the probability distribution Pfat¼ ig ¼ zi;tþPN

i¼1
zi;tþ

. When

the budget is not enough to pull any arm, the algorithm termi-
nates and releases the disguised accumulative reward. The
disguised accumulative reward of each worker is computed
in Step 13, which is the same as Steps 8 and 18 inAlgorithm 1.

Algorithm 2. The DPU Algorithm

Input:N , fXi;t; ciji2N ; t2T g, B, d, c
¼mini ci
Output: r
1: Initialization: t¼0; 8i2N : zi;t¼0;
2: t¼ tþ1; Let Bt¼B be the residual budget;
3: while Bt�c
 do
4: if t�N then
5: at¼ t; Pull the atth arm;
6: 8i2N : zi;t¼zi;t�1; zat;t¼zat;t�1þ1;
7: else
8: for each i2N do
9: Compute Ii;t�1 according to Definition 4.1;
10: Solving the problem shown in Eqs. 25-26 to get

fz1;tþ ; . . . ; zN;tþg;
11: Pull the atth arm with probability shown in Eq. 27;
12: 8i2N : zi;t¼zi;t�1; zat;t¼zat;t�1þ1;
13: 8i2N : r̂i;t¼HiðXi;1:tÞ;
14: Btþ1¼Bt�cat ; t¼ tþ1;
15: r¼

P
i2N r̂i;t�1;

4.3 Performance Analysis

Since the DPU algorithm adopts the same hybrid differen-
tial private mechanism as DPF and the bandit policy cannot
affect the privacy, we can directly get the following conclu-
sion without any proof:

Theorem 4.2. The DPU algorithm is d-differentially private.

Now,we analyze the regret performance of DPUby deriv-
ing an upper bound on the regret. To this end, we assume

that DPU terminates in time slot T . Under this assumption,
we first calculate the probability of pulling an arbitrary arm
(See Lemma 4.3). Then, with this probability, we analyze the
expected value of the total number of times of pulling the
arm (See Lemma 4.4). Next, we derive a lower bound on the
total time slots of running DPU: T (See Lemma 4.5). Finally,
based on the above lemmas, we can derive the expected
regret produced byDPU.

For simplicity, we let i	¼argmaxi
qi
ci
, ît¼argmaxi

Ii;t�1

ci
, c	¼

maxi ci, and c
¼mini ci. Then, we have:

Lemma 4.3. Suppose that DPU terminates in time slot T . Then,
for any k2N , and any 0 < t�T , we can get

Pfat¼kjTg�Pfît¼kjTgþ c	
c


� �2 1

T�tþ1
: (28)

Proof. For simplicity, we drop the conditional of T in this
proof and will add it in the end. First, we consider a par-
ticular value of the residual budget Bt.

According to the greedy selection strategy, DPU will
first select the îtth arm at most bBt

c
ît

c times. After this oper-

ation, the residual budget is at most cît . Then, we haveP
i6¼ît

zi;tþ �
c
ît
c

. If DPU only selects the arm with the larg-

est cost, then
PN

i¼1 zi;tþ �
Bt
c	
. Therefore, combining these

two inequalities, we haveP
i6¼ît

zi;tþPN
i¼1zi;tþ

�
c
ît
c

Bt
c	

� c	
c


� �2 c

Bt

:

Additionally, given the end time slot T , the DPU algo-

rithm can still pull T � tþ 1 arms from time slot t, which

means Bt�catþcatþ1
þ� � �þcaT �ðT � tþ 1Þc
. Then, we

can obtain c

Bt
� 1

T�tþ1. Further,P
i6¼ît

zi;tþPN
i¼1zi;tþ

� c	
c


� �2 1

T � tþ 1
:

Since DPU pulls the kth arm with probability

Pfat¼kg¼ zi;tþPN

i¼1
zi;tþ

, we have

Pfat ¼ kjBtg
¼Pfat ¼ k; ît ¼ kjBtg þ Pfat ¼ k; ît 6¼kjBtg

�
zîtPN

i¼1 zi;tþ
Pfît ¼ kjBtg þ

P
i6¼ît

zi;tþPN
i¼1 zi;tþ

Pfît 6¼kjBtg

� Pfît ¼ kjBtg þ
P

i 6¼ît
zi;tþPN

i¼1 zi;tþ

� Pfît ¼ kjBtg þ
c	
c


� �2 1

T�tþ 1
:

Next, for all possible values of the residual budget Bt,
we have

Pfat ¼ kjTg�
X

Bt
Pfat ¼ kjT;BtgPfBtjTg

�
X

Bt

�
Pfît ¼ kjT;Btg þ

�
c	
c


�2 1

T � tþ 1

�
PfBtjTg

� Pfît ¼ kjTgþ
�
c	
c


�2
1

T � tþ 1
:
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Therefore, the lemma holds. tu

Lemma 4.4. Given that the DPU algorithm terminates in time
slot T , for any 0 < d; r < 1, we have

E½zk;T jT ��1þ 2p2

3
þmaxfak lnT;bk lnð4T 4ÞðlogT þ 1Þg

þ c	
c


� �2

lnT;

(29)

where ak ¼ 8
r2s2

k
c2
k

, bk ¼ 2
ffiffi
8

p

dð1�rÞskci	
, sk ¼ qi	

ci	
�qk

ck
.

Proof.We assume that T is given in advance. For simplicity,
we drop the conditional of T in this proof and will add it
in the end. According to Lemma 4.3, for any l�1, we have

E½zi;T � ¼ 1þ
XT

t¼Nþ1
Pfat ¼ kg

� 1þ
XT

t¼Nþ1
Pfît ¼ kg þ

XT

t¼Nþ1

�
c	
c


�2 1

T � tþ 1

� lþ
XT

t¼Nþ1
Pfît ¼ k; zk;t� lg þ

XT

t¼Nþ1

�
c	
c


�2
1

T � tþ 1
:

For the second item in above equation, we have

XT

t¼Nþ1
Pfît ¼ k; zk;t� lg

¼
XT

t¼Nþ1
P

�
Ii	;t
ci	

�Ik;t
ck

;zk;t� l

�

�
XT

t¼Nþ1
P

�
min1�zi	 ;t�t

Ii	;t
ci	

� maxl�zk;t�t
Ik;t
ck

�

�
XT

t¼1

Xt

zi	 ;t¼1

Xt

zk;t¼l
P

�
Ii	;t
ci	

� Ik;t
ck

�
:

Note that Ii;t ¼
r̂i;t
zi;t

þ
ffiffiffiffiffiffiffi
2 ln t
zi;t

q
þ vt

zi;t
. Let bt;n ¼

ffiffiffiffiffiffiffi
2 ln t
n

q
. We

can observe that if
Ii	 ;t
ci	

� Ik;t
ck

holds, then at least one of the

following inequalities must hold:

Ii	;t
ci	

� qi	
ci	

;
Ik;t
ck

�qk
ck

;
qi	
ci	

<
qk
ck

þ
2bt;zk;t
ck

þ 2vt
zi	;tci	

:

(30)

For the first inequality in Eq. (30), we have

P

�
Ii	;t
ci	

� qi	
ci	

�
¼ Pfr̂i	;t � ri	;t�vt or ri	;t � zi	;tqi	 �zi	;tbt;zi	 ;tg
� Pfr̂i	;t � ri	;t�vtg þ Pfri	;t � zi	;tqi	 �zi	;tbt;zi	 ;tg:

Here, according to Lemmas 3.2 and 3.3, we have Pfr̂i	;t �
ri	;t�vtg � g, and

Pfri	;t � zi	;tqi	�zi	;tbt;zi	 ;tg � e
�2b2t;zi	 ;t

zi	 ;t ¼ t�4. Thus, we

can obtain PfIi	 ;tci	
� qi	

ci	
g � g þ t�4.

Similarly, for the second inequality in Eq. (30), we
have PfIk;tck

� qk
ck
g � g þ t�4. Let g ¼ t�4. Then, we can con-

clude

P

�
Ii	;t
ci	

� qi	
ci	

�
� 2t�4; andP

�
Ik;t
ck

�qk
ck

�
� 2t�4: (31)

For the third inequality in Eq. (30), we need to find the
minimum values of zk;t and zi	;t such that it is false. Let
si ¼ qi	

ci	
� qi

ci
. The event that the third inequality in Eq. (30)

is false is equivalent to sk�
2bt;zk;t
ck

þ 2vt
zi	 ;tci	

. For any 0 <

r < 1, if the following two conditions hold:

rsk �
2bt;zk;t
ck

; (32)

ð1�rÞsk �
2vt

zi	;tci	
; (33)

then sk �
2bt;zk;t
ck

þ 2vt
zi	 ;tci	

is true. From the first condition in

Eq. (32), we can obtain

zk;t �
8 ln t

r2s2
kc

2
k

: (34)

From the second condition in Eq. (33), we have zi	;t �
2vt

ð1�rÞskci	
. Since vt ¼

ffiffi
8

p

d
ln 4

g
ðlog tþ 1Þ, and we have set g¼

t�4, we can obtain

zi	;t �
2
ffiffiffi
8

p
ln ð4t4Þ

dð1� rÞskci	
ðlog tþ 1Þ: (35)

Thus, under these two conditions Eqs. (34) and (35), the

third inequality in Eq. 30 is false.
Let ak ¼ 8

r2s2
k
c2
k

, and bk ¼ 2
ffiffi
8

p

dð1�rÞskci	
. We have

lþ
XT

t¼Nþ1
Pfît ¼ k; zk;t � lg

� dmaxfak lnT;bk lnð4T 4ÞðlogT þ 1Þgeþ
XT
t¼1

Xt
zi	;t¼1

Xt
zk;t¼l

4t�4

� 1þmaxfak lnT;bk lnð4T 4ÞðlogT þ 1Þg þ 2p2

3
:

Since
PT

t¼Nþ1 ðc	c
Þ
2 1
T�tþ1 � ðc	c
Þ

2 lnT , we can conclude

E½zk;T jT � � 1þmaxfak lnT;bk lnð4T 4ÞðlogT þ 1Þg þ 2p2

3

þ
�
c	
c


�2

lnT:

Therefore, Lemma 4.4 holds. tu

Next, we derive an upper bound on the executive time
slots T of DPU, which is shown as follows:

Lemma 4.5. The total time slots of running the DPU algorithm,
i.e., T , is bounded by

E½T � >B� c

ci	

�
X

k:ck > ci	

ck�ci	
ci	

�
1þ 2p2

3
þ
�
c	
c


�2

ln

�
B

c


�

þmax

�
ak ln

�
B

c


�
;bk ln

�
B

c


��
log

�
B

c


�
þ 1

���
:

Proof. The DPU algorithm terminates if the residual budget
is no more than the minimal cost, i.e., B�

PT
t¼1 cat < c
.

By using Lemma 4.4, we have
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B�c
 < E
hXT

t¼1
cat jT

i
�E

hnXT

t¼1
ci	 þ

X
k:ck > ci	

ðck�ci	ÞPfat ¼ kjTg
o
jT
i

�E½T �ci	 þ
X

k:ck > ci	
ðck�ci	ÞE



E½zk;T jT �

�
�E½T �ci	 þ

X
k:ck > ci	

ðck�ci	ÞE
�
ð1þ 2p2

3
þ
�
c	
c


�2

lnT

þmaxfak lnT;bk lnT ðlogT þ 1ÞgÞ


:

Since T � B=c
, by substituting T ¼ B=c
 into the above
equation we can directly prove that Lemma 4.5 holds. tu

Based on the above lemmas, we derive an upper bound
on the regret of DPU, which is presented as follow:

Theorem 4.6. For any budget B > 0, the upper bound on the
expected regret of the DPU algorithm is Oðlog 2ðB=c
ÞÞ.

Proof. The expected regret can be computed as follows:

E½r	��
XN

k¼1
qkE½zk;1þ�

�B
qi	
ci	

� qi	
XN

k¼1
E½zk;1þ� þ

XN

k¼1
ðqi	�qkÞE



E½zk;T jT �

�
�qi	

�
B

ci	
�E½T �

�
þ
X

k:qi	 >qk
ðqi	�qkÞE



E½zk;T jT �

�
�
�
qi	
ci	

X
k:ck > ci	

ðck�ci	 Þ þ
X

k:qi	 >qk
ðqi	 �qkÞ

��
1þ 2p2

3

þ
�
c	
c


�2

ln

�
B

c


�
þmax

�
ak ln

�
B

c


�
; bk ln

�
B

c


��
log

�
B

c


�
þ 1

���
:

Here, Lemmas 4.4 and 4.5 are used in the last step. More-
over, the final result is in the order of Oðlog 2ðB=c
ÞÞ.
Therefore, the theorem holds. tu

Here, when ignoring the influence of the differential pri-
vacy mechanism in the above analysis, we can derive a
regret bound OðlogBÞ, which corresponds to the reward
loss only incurred by the platform not knowing the true
QoC of each worker. It means that due to the application of
the differential privacy mechanism, the regret bound of
DPU increases from OðlogBÞ to Oðlog 2ðB=c
ÞÞ. This is still a
sub-linear regret bound.

Note that we have obtained the upper bounds of regrets
with regard to the DPF and DPU algorithms, which are
shown in Theorems 3.5 and 4.6, respectively. By comparing
the two regret bounds, we can infer that when the budget B
is small, the regret of DPF will be smaller than that of DPU.
However, when the budget B becomes larger, the regret of
DPF will be more than that of DPU with a high probability.
Therefore, we can conclude that when the budget B is small,
the DPF algorithm can achieve a better QoC performance;
otherwise, the DPU algorithm will be more suitable to
obtain higher workers’ QoCs. In Section 5, we will also ver-
ify this observation through sufficient simulations.

Finally, we consider the computational complexity of
DPU.

Theorem 4.7. The DPU algorithm has a polynomial-time
computational complexity.

Proof. The computation overhead of Algorithm 2 is domi-
nated by Steps 10 and 13. In Step 10, we solve the knapsack

problem, whose computation overhead is OðN logN �
B2=c2
Þ. The computation overhead of Step 13 is the same
as that of Steps 8 and 18 in Algorithm 1, which is
OðNB2=c2
Þ. Then, the computation complexity ofAlgorithm
2 isOðN logN �B2=c2
Þ. Therefore, the theorem holds. tu

5 EVALUATION

In this section, we conduct extensive simulations on real-
trace and synthetic datasets to evaluate the performances of
the DPF and DPU algorithms.

5.1 Evaluation Methodology

Algorithms for Comparison. In the simulations, we compare
DPF and DPUwith several representative algorithms, includ-
ing �t-Greedy [19] and DP-UCB-Bound [21]. In each time slot
t, �t-Greedy pulls an arm with the highest current estimated
average reward with probability 1� �t and selects a random
arm with probability �t. Here, �t ¼ minf1; 5N

tðqi	�qi
 Þ
2g. The DP-

UCB-Bound algorithm pulls the arm with the maximal value

of
r̂i;t
zi;t

þ 4
ffiffi
8

p
log tðlog 2zi;tþ1Þ

dzi;t
. Since �t-Greedy can not guarantee dif-

ferential privacy, for fair comparison, we incorporate the
hybrid differentially private mechanism into �t-Greedy, i.e.,
using the disguised average reward as the estimated average
reward. Moreover, since both of �t-Greedy and DP-UCB-
Bound do not take the costs and budget of pulling arms into
consideration, we add a cost to each arm consistently and con-
duct these algorithms under the same budget. In addition, we
also implement the optimal (OPT) algorithm without privacy
preservation for comparison. The OPT algorithm has full
knowledge of the QoC value of each worker and recruits the
optimalworker in each time slot.

Simulation Setup.We conduct our proposed algorithms and
the compared algorithms using both the real-trace dataset and
the synthetic datasets. The real-trace dataset we applied is
Chicago Taxi Trips [27]. Due to the data reporting process, not
all trips are reported and not all reported trips are usable.
Here, we use the relatively complete trace reported in March,
2018, including 317,450 trips. Each trip record is mainly
composed of the taxi id, trip start timestamp, trip end
timestamp, trip miles, pickup=dropoff community area,
fare, etc. In the simulations, we treat the taxi-hailing requests
in the trace as theMCS task, and see the drivers asMCSwork-
ers. From the trace, we can derive that the requests are distrib-
uted in multiple community areas. In order to make it more
applicable to our model, we randomly select a community
area and focus on dealing with the taxi-hailing requests
whose pickup community area values are the selected area.
Here, we select the 8th community area, and the number of
taxis and taxi-hailing requests in this community area are 125
and 6349, respectively. Then, the algorithms terminate when
the budget runs out or all taxi-hailing requests are handled
out. Next, we can derive each driver’s travelling distance.
Then, we set the value of each driver’s cost in proportional to
its travelling distance. Finally, since there are no records about
the drivers’ QoCs, we generate the QoC of each driver as a
value randomly sampled from a Gaussian distribution. Each
Gaussian distribution is truncated to the interval [0,1]. The
corresponding mean and standard deviation are randomly
sampled from the uniform distribution on (0,1).
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In addition, we also use synthetic datasets to test the per-
formances of the implemented algorithms. In order to
achieve unbiased performance comparison, we generate
200 different synthetic datasets. In each dataset, we first set
the number of workers N as 100. Then, similar to the real-
trace data, we sample the QoC of each worker from a Gauss-
ian distribution which is truncated to the interval [0,1].
Besides, the workers’ costs are randomly sampled from the
uniform distribution on [1,10]. Then, the algorithms are con-
ducted 1000 times under each synthetic dataset. The outputs
are the average results of the algorithms running on the 200
datasets.

Additionally, in order to evaluate the impact of the dif-
ferential privacy security parameter d and the budget of
recruiting workers B on the performances of the imple-
mented algorithms, we set the values of d as 0.2, 0.4, 0.6, 0.8
and set B from 1000 to 10000, respectively. Since the perfor-
mance of DPF also depends on the value of �, we implement
the algorithm with � ¼ 0:01, 0.05 and 0.1 for comparison.
The detailed parameter settings are shown in Table 3. Fur-
thermore, the algorithms are implemented in Eclipse IDE
for Java Developers, and the simulations are performed on
a Windows machine with 8GB RAM, Intel(R) Core(TM) i5
2.90GHz CPU.

Performance Metrics. In the simulations, we tracked five
performance metrics: the accumulative reward, the average
regret, the privacy leakage, and the time efficiency. The
average regret is the value of the total regret divided by the
budget B. The privacy leakage of an algorithm is used to
evaluate how well the privacy of workers’ sensitive data is
protected by this algorithm. We use the Kullback-Leibler

(KL) divergence to measure the privacy leakage, which is
defined as follows:

Definition 5.1 (Privacy Leakage). For two input data
sequences ~X1:t�1 and ~X0

1:t�1 which differ in at most one time
slot, the privacy leakage is computed as

X
at2N

PfCtð~X1:t�1Þ ¼ atg ln
�
PfCtð~X1:1�tÞ ¼ atg
PfCtð~X0

1:1�tÞ ¼ atg

�
:

Finally, the time efficiency performances refer to the run-
ning times of the DPF and DPU algorithms.

5.2 Evaluation Results

Accumulative Reward. The simulation results of evaluating
the accumulative reward performance are plotted in Figs. 4
and 6. From the results, we can observe that the accumula-
tive rewards of all algorithms increase with the increase of
budget B. It is due to the reason that more workers can be
recruited with an increasing budget B. Meanwhile, we can
also find that a larger d leads to higher accumulative
rewards for all algorithms. This is because that when d is
small, the algorithms have higher privacy levels, which
means that the algorithms need to spend more budget iden-
tifying the optimal worker. In addition, since DP-UCB-
Bound and �t-Greedy recruit workers without considering
their costs, they would recruit workers with large costs,
resulting in the rapid consumption of budget and less num-
ber of recruited workers. Consequently, DP-UCB-Bound
and �t-Greedy produce less rewards than our proposed
algorithms.

Average Regret. The results of evaluating the average
regrets based on real-trace dataset and synthetic datasets
are shown in Figs. 5 and 7, respectively. From the figures,
we can find that when d increases, the regrets of all imple-
mented algorithms decrease. The results are consistent with
the evaluation results of the accumulative rewards. In addi-
tion, in most cases, for example, d > 0:2 and B � 4000, the
average regret performance of DPU is superior to that of

TABLE 3
Parameter Settings

Parameter name Values

the budget of recruiting workers: B 1000 - 10000
the parameter in DPF: � 0.01, 0.05, 0.1
the security parameter: d 0.1 - 1.0

Fig. 4. Performance comparisons: accumulative reward versus differential privacy budget d using the real-trace dataset.

Fig. 5. Performance comparisons: Average regret versus differential privacy budget d using the real-trace dataset.
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DPF, as shown in Figs. 5b and 5d and, Figs. 7b and 7d. How-
ever, in the cases when d and B are small, for example,
d � 0:2 and B < 4000, a well tuned DPF algorithm outper-
forms DPU, as shown in Figs. 5a and 7a. More intuitively,
when we fix the value of d, we can discover that as the
increasing of the budget B, the DPU algorithm incurs less
regret than DPF. These phenomenons are in accordance
with the theoretical analyses of regrets in Sections 3.4 and
4.3. Consequently, the MSC platform can choose the suitable
algorithm according to practical scenarios.

Privacy Leakage. To evaluate the privacy leakage, we set
the differential privacy security parameter d from 0.1 to 1. In
addition, we randomly generated 1000 pairs of data sequen-
ces X1:t and X0

1:t, which differ in at most one record. The
results are shown in Fig. 8. We can observe that a larger d
leads to a higher privacy leakage. This is consistent with the
definition of differential privacy. Moreover, both of DPF and
DPU have low privacy leakage (no larger than 0.15). Here,
since the evaluation results based on the real-trace dataset
and the synthetic datasets are almost similar, we only pres-
ent the results produced by using the synthetic datasets.

Time Efficiency. Fig. 9 presents the running time of execut-
ing the DPF algorithm and the DPU algorithm under differ-
ent budget values. We can observe that although the DPU
algorithm achieves better performances with regard to the
accumulative reward (and the average regret as well) in
most cases, the DPU algorithm incurs higher running time
compared with DPF. However, the running time of DPU is
still less than 2.5s when the budget of recruiting workers B

equals to 10000. Therefore, the MSC platform can also take
the time efficiency into consideration when choosing the
used algorithms.

Remark. Note that for a long-term continuously task, larger
budget means more executing time slots. In the above
evaluations, we only present the evaluation results of the
performances of the accumulative reward and the average
regret with the variation of budget. In addition, the results
are similar whenwe increase the executing time slots.

6 RELATED WORKS

Currently, it has attracted considerable attention from acade-
mia with regard to different research problems in mobile
crowdsensing/crowdsourcing systems, including worker
recruitment, task allocation, incentive mechanism design,
and privacy, etc [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [14], [18], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38]. For example, Z. He et al. in [1] propose a greedy
algorithm and a genetic algorithm to solve the worker
recruitment problem in vehicle-based crowdsourcing, aim-
ing at maximizing the participation coverage and improving
the crowdsourcing quality. L. Yang et al. in [11] develop an
auction framework to recruit workers inMCS, and propose a
differentially private data aggregation scheme to protect the
privacy of workers’ sensed data. Nevertheless, most of these
existing works conduct the worker recruitment procedure
based on the assumption that workers’ QoCs are known as a

Fig. 6. Performance comparisons: accumulative reward versus differential privacy budget d using the synthetic datasets.

Fig. 7. Performance comparisons: average regret versus differential privacy budget d using the synthetic datasets.

Fig. 8. Privacy leakage versus d. Fig. 9. Running time versus B.
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prior. None of them discusses the unknown worker recruit-
ment problemwith privacy concern.

So far, MABs have been widely investigated and various
MAB policies have also been proposed and utilized into
many research fields [19], [20], [21], [22], [25], [26], [39], [40],
[41], [42], [43]. For instance, [39] has shown that the regret of
stochastic MAB grows at least logarithmically over time. In
[19], the authors have proposed an index-based policy for
stochastic MAB using the UCB policy, and shown that the
expected regret of UCB grows at least logarithmically. S.
Kang et al. in [43] address the user-channel allocation prob-
lem in multi-user multi-channel cognitive radio networks
without a prior knowledge of channel statistics, and develop
an MAB-based learning algorithm to solve the problem.
Compared with our work, the most related works are [21],
[26]. In [21], A. C. Y. Tossou et al. propose three UCB-based
algorithms for the DP-MAB problem. Nevertheless, this
paper has not taken into consideration the costs of pulling
arms or budget constraint. Actually, when we introduce the
costs and budget constraint into DP-MAB, our DP-MAB
problem contains the 0-1 knapsack problems which makes it
completely different from that in [21]. Since the knapsack
problem isNP-hard, our DP-MABproblem ismore challeng-
ing. In [26], L. Tran-Thanh et al. have propose a budget-lim-
ited worker recruitment policy based on MABs. However,
they do not take the privacy issue into consideration, which
would also increase the difficulties of designing algorithms
and analyzing theoretical performances. Overall, none of
these existing works combines MAB, differential privacy,
and limited budget to solve the unknown worker recruit-
ment problem forMCS systems.

7 DISCUSSION

In this paper, we mainly focus on handling a single continu-
ous long-term task for the unknown worker recruitment
problem. Actually, it can be extended to support the scenario
of multiple tasks. Suppose that an MCS platform publicizes
some tasks at the same time. First, consider a special case
where these tasks and the sets of workers that are willing to
perform these tasks are independent with each other. For
this case, we can divide the problem into multiple single-
task problems and directly apply our proposed algorithms
to solve them in parallel. Second, we consider a general case
where each of these tasks can be performed by multiple
workers and each worker can perform multiple tasks. For
this case, we need to recruit a set of workers in each time slot
to perform these tasks. This is actually a combinatorial multi-
armed bandit problem, in which a set of arms (called an arm
combination) are pulled simultaneously in each time slot. To
address such a problem, we first construct many combina-
tions of workers and treat them as a series of candidate arm
combinations. Then, we take each arm combination as a
whole and conduct our bandit policies to solve the combina-
torial unknown worker recruitment problem. Note that we
only need to select one worker combination in each time slot.
Thus, it is unnecessary to determine all possible worker com-
binations. For example, when the UCB policy is adopted, we
only need to determine a worker combination with the maxi-
mal UCB index value in each time slot. This can be approxi-
mately solved by using a greedy selection strategy.

In our DP-MAB model, the workers are assumed to
truthfully submit their costs to the platform. As we have not
leveraged any auction mechanisms, our algorithms can-
not completely guarantee the workers’ truthfulness. Even
though, this does not mean that the workers can arbitrarily
report their costs. Note that our algorithms recruit workers
in the descending order of the values of QoC per cost. If a
worker increases his/her cost beyond a critical value (which
is equivalent to the critical cost in the Second-Price auction),
he/she might be replaced by the worker with this critical
cost. This implies that the total payment paid by the platform
will be no more than that in the case where a truthful Sec-
ond-Price auction is adopted. Further, if seeking for the com-
plete truthfulness, we must combine our MAB policies with
a truthful auctionmechanism. However, theUCB bandit pol-
icy cannot work in this case, because it has been proved that
the truthful mechanisms must separate “exploration” from
“exploitation” [44]. As for the �-First bandit policy, we can
directly apply an auctionmechanism to ourmodel by adding
a payment computation process in each time slot. Moreover,
we need to guarantee that the total payment is no more than
the budget. It should be pointed out that when involving the
hybrid differentially private mechanism, we cannot obtain
precise QoC values, and consequently we can only achieve
an approximate truthfulness and individual rationality.

8 CONCLUSION

In this paper, we focus on the differentially private unknown
worker recruitment problem in the MCS system. To address
this problem, we introduce the Multi-Armed Bandit (MAB)
model, and turn the unknown worker recruitment problem
into a Differentially Private MAB (DP-MAB) game. More-
over, we propose two budget-feasible differentially private
arm-pulling algorithms, i.e., the �-First-based Differentially
Private algorithm (DPF) and the UCB-based Differentially
Private algorithm (DPU). The proposed DPF and DPU
algorithms can not only satisfy d-differential privacy, but
also achieve provable theoretical performance bounds on
the expected regrets. Finally, extensive simulations are
conducted to verify the significant performances of DPF
andDPU.
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